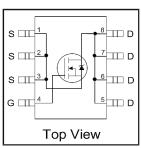
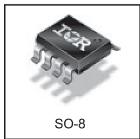
International Rectifier

SMPS MOSFET

IRF7478PbF

HEXFET® Power MOSFET


Applications


- High frequency DC-DC converters
- Lead-Free

V _{DSS}	$R_{DS(on)}$ max (m Ω)	I _D
60V	26@V _{GS} = 10V	4.2A
	30@V _{GS} = 4.5V	3.5A

Benefits

- Low Gate to Drain Charge to Reduce Switching Losses
- Fully Characterized Capacitance Including Effective C_{OSS} to Simplify Design, (See App. Note AN1001)
- Fully Characterized Avalanche Voltage and Current

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	7.0	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	5.6	A
I _{DM}	Pulsed Drain Current ①	56	
P _D @T _A = 25°C	Power Dissipation⊕	2.5	W
	Linear Derating Factor	0.02	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
dv/dt	Peak Diode Recovery dv/dt ©	3.7	V/ns
TJ	Operating Junction and	-55 to + 150	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JL}$	Junction-to-Drain Lead		20	
$R_{\theta JA}$	Junction-to-Ambient ④		50	°C/W

Static @ $T_J = 25$ °C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	60		_	٧	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.065	_	V/°C	Reference to 25°C, I _D = 1mA
D	Static Drain-to-Source On-Resistance		20	26	mΩ	V _{GS} = 10V, I _D = 4.2A ③
R _{DS(on)}			23	30	11175	V _{GS} = 4.5V, I _D = 3.5A ③
V _{GS(th)}	Gate Threshold Voltage	1.0		3.0	٧	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
Inna	Drain-to-Source Leakage Current			20	μA	V _{DS} = 48V, V _{GS} = 0V
IDSS				100	μΛ	$V_{DS} = 48V, V_{GS} = 0V, T_{J} = 125$ °C
I _{GSS}	Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage			100	nA	V _{GS} = 20V
				-100	IIA	V _{GS} = -20V

Dynamic @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
9fs	Forward Transconductance	17	_		S	$V_{DS} = 50V, I_{D} = 4.2A$
Qg	Total Gate Charge		21	31		I _D = 4.2A
Q _{gs}	Gate-to-Source Charge		4.3	_	nC	$V_{DS} = 48V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		9.6			$V_{GS} = 4.5V$
t _{d(on)}	Turn-On Delay Time		7.7	—		V _{DD} = 30V
t _r	Rise Time		2.6		ns	$I_D = 4.2A$
t _{d(off)}	Turn-Off Delay Time		44			$R_G = 6.2\Omega$
t _f	Fall Time		13			V _{GS} = 10V ③
C _{iss}	Input Capacitance		1740			V _{GS} = 0V
Coss	Output Capacitance		300			V _{DS} = 25V
C _{rss}	Reverse Transfer Capacitance		37		pF	f = 1.0MHz
Coss	Output Capacitance		1590			$V_{GS} = 0V$, $V_{DS} = 1.0V$, $f = 1.0MHz$
Coss	Output Capacitance		220			$V_{GS} = 0V$, $V_{DS} = 48V$, $f = 1.0MHz$
Coss eff.	Effective Output Capacitance	_	410			V _{GS} = 0V, V _{DS} = 0V to 48V ⑤

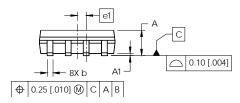
Symbol	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy®		140	mJ
I _{AR}	Avalanche Current①		4.2	Α

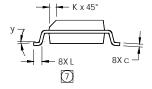
Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions	
I _S	Continuous Source Current (Body Diode)			2.3	Α	MOSFET symbol showing the	
I _{SM}	Pulsed Source Current (Body Diode) ①			56		integral reverse p-n junction diode.	
V_{SD}	Diode Forward Voltage	_	_	1.3	V	$T_J = 25$ °C, $I_S = 4.2$ A, $V_{GS} = 0$ V ③	
t _{rr}	Reverse Recovery Time		52	78	ns	$T_J = 25^{\circ}C, I_F = 4.2A$	
Q _{rr}	Reverse RecoveryCharge		100	150	nC	di/dt = 100A/µs ③	

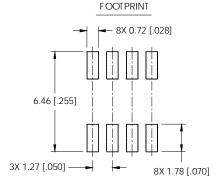
International

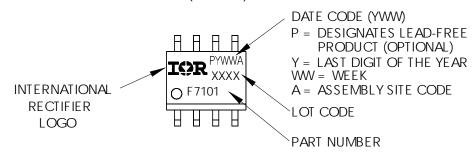
TOR Rectifier


IRF7478PbF


SO-8 Package Outline

Dimensions are shown in millimeters (inches)

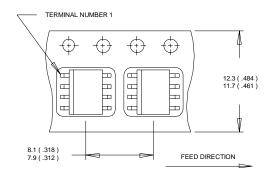

	DIM	INC	HES	MILLIM	ETERS	
	DIIVI	MIN	MAX	MIN	MAX	
I	Α	.0532	.0688	1.35	1.75	
ſ	A1	.0040	.0098	0.10	0.25	
Γ	р	.013	.020	0.33	0.51	
Ι	C	.0075	.0098	0.19	0.25	
Ι	О	.189	.1968	4.80	5.00	
ſ	Е	.1497 .1574		3.80	4.00	
	е	.050 B	ASIC	1.27 BASIC		
	е1	.025 B	ASIC	0.635 E	BASIC	
	Ι	.2284	.2440	5.80	6.20	
	Κ	.0099	.0196	0.25	0.50	
I	L	.016	.050	0.40	1.27	
Γ	У	0°	8°	0°	8°	


NOTES:

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
- $\fbox{5}$ DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS . MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
- (6) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
- (7) DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.

SO-8 Part Marking

EXAMPLE: THIS IS AN IRF7101 (MOSFET)

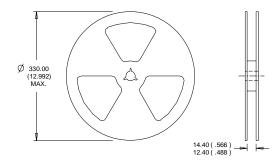


IRF7478PbF

International IOR Rectifier

SO-8 Tape and Reel

Dimensions are shown in millimeters (inches)


NOTES:

- NOTES:

 1. CONTROLLING DIMENSION: MILLIMETER.

 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).

 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES :

- CONTROLLING DIMENSION : MILLIMETER.
 OUTLINE CONFORMS TO EIA-481 & EIA-541

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25$ °C, L = 16mH $R_G = 25\Omega$, $I_{AS} = 4.2A$.
- When mounted on 1 inch square copper board
- ⑤ Coss eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}
- $\textcircled{6} \ I_{SD} \leq 4.2A, \ di/dt \leq 160A/\mu s, \ V_{DD} \leq V_{(BR)DSS},$ $T_J \le 150$ °C

Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualifications Standards can be found on IR's Web site.

